Решите тригонометрическое уравнение

2cos^2x+3sin^2x+2cos=0

(^2 - квадрат)

2cos^2x+3sin^2x+2cosx=0
sin^2x=1-cos^2x
2cos^2x+3(1-cos^2x)+2cosx=0
2cos^2x+3-3cos^2x+2cosx=0
-cos^2x+3+2cosx=0
cosx=t t ∈[-1;1]
-t^2+3+2t=0
t^2-2t-3=0
√D=4
t1=3 ∅ t.k. t∈[-1;1]
t2=-1
cosx=-1
x=Pi+2pin , n∈Z

Оцени ответ
Не нашёл ответ?

Если тебя не устраивает ответ или его нет, то попробуй воспользоваться поиском на сайте и найти похожие ответы по предмету Алгебра.

Найти другие ответы

Загрузить картинку
Гадать еще раз